Can Tangent Sphere Bundles over Riemannian Manifolds have Strictly Positive Curvature?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F01%3A00105344" target="_blank" >RIV/00216208:11320/01:00105344 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Can Tangent Sphere Bundles over Riemannian Manifolds have Strictly Positive Curvature?
Original language description
We prove, except some particular cases, that for every point x of a Riemannian manifold (M,g), dim M > 2, there is a curvature operator R(X,Y)(X,Y linearly independent) with nontrivial kernel. Then we apply our results to the problem in title.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F99%2F0265" target="_blank" >GA201/99/0265: Computer - aided differential geometry and its applications to robotics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Global Differential Geometry: The Mathematical Legacy of Alfred Gray
ISBN
—
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
110-118
Publisher name
AMS
Place of publication
Boston, USA
Event location
Boston, USA
Event date
Jan 1, 2001
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—