All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Supports in Lipschitz-free spaces and applications to extremal structure

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00341057" target="_blank" >RIV/68407700:21240/20:00341057 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jmaa.2020.124128" target="_blank" >https://doi.org/10.1016/j.jmaa.2020.124128</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2020.124128" target="_blank" >10.1016/j.jmaa.2020.124128</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Supports in Lipschitz-free spaces and applications to extremal structure

  • Original language description

    We show that the class of Lipschitz-free spaces over closed subsets of any complete metric space M is closed under arbitrary intersections, improving upon the previously known finite-diameter case. This allows us to formulate a general and natural definition of supports for elements in a Lipschitz-free space F(M). We then use this concept to study the extremal structure of F(M). We prove in particular that (δ(x) -δ(y))/d(x, y) is an exposed point of the unit ball of F(M) whenever the metric segment [x, y] is trivial, and that any extreme point which can be expressed as a finitely supported perturbation of a positive element must be finitely supported itself. We also characterize the extreme points of the positive unit ball: they are precisely the normalized evaluation functionals on points of M.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ18-00960Y" target="_blank" >GJ18-00960Y: Selected topics in non-linear functional analysis and approximation theory</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

    1096-0813

  • Volume of the periodical

    489

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

  • UT code for WoS article

    000534403700012

  • EID of the result in the Scopus database

    2-s2.0-85082851658