Supports and extreme points in Lipschitz-free spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00341220" target="_blank" >RIV/68407700:21240/20:00341220 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4171/RMI/1191" target="_blank" >https://doi.org/10.4171/RMI/1191</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/RMI/1191" target="_blank" >10.4171/RMI/1191</a>
Alternative languages
Result language
angličtina
Original language name
Supports and extreme points in Lipschitz-free spaces
Original language description
For a complete metric space M, we prove that the finitely supported extreme points of the unit ball of the Lipschitz-free space FM are precisely the elementary molecules (δ(p)-δ(q))/d(p,q) defined by pairs of points p,q in M such that the triangle inequality d(p,q)<d(p,r)+d(q,r) is strict for any relementM different from p and q. To this end, we show that the class of Lipschitz-free spaces over closed subsets of M is closed under arbitrary intersections when M has finite diameter, and that this allows a natural definition of the support of elements of FM.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ18-00960Y" target="_blank" >GJ18-00960Y: Selected topics in non-linear functional analysis and approximation theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
REVISTA MATEMATICA IBEROAMERICANA
ISSN
0213-2230
e-ISSN
—
Volume of the periodical
36
Issue of the periodical within the volume
7
Country of publishing house
ES - SPAIN
Number of pages
17
Pages from-to
2073-2089
UT code for WoS article
000581669900006
EID of the result in the Scopus database
2-s2.0-85095859947