Some remarks on the structure of Lipschitz-free spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00476946" target="_blank" >RIV/67985840:_____/17:00476946 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/17:00313687
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Some remarks on the structure of Lipschitz-free spaces
Original language description
We give several structural results concerning the Lipschitz-free spaces F(M), where M is a metric space. We show that F(M) contains a complemented copy of l(1)(Gamma), where Gamma = dens(M). If N is a net in a finite dimensional Banach space X, we show that F(N) is isomorphic to its square. If X contains a complemented copy of l(p), c(0) then F(N) is isomorphic to its l(r)-sum. Finally, we prove that for all X congruent to C(K) spaces, where K is a metrizable compact, F(N) are mutually isomorphic spaces with a Schauder basis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-07378S" target="_blank" >GA16-07378S: Nonlinear analysis in Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the Belgian Mathematical Society-Simon Stevin
ISSN
1370-1444
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
2
Country of publishing house
BE - BELGIUM
Number of pages
22
Pages from-to
283-304
UT code for WoS article
000405534900009
EID of the result in the Scopus database
2-s2.0-85043337897