All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Josefson–Nissenzweig property for Cp-spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00508352" target="_blank" >RIV/67985840:_____/19:00508352 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s13398-019-00667-8" target="_blank" >http://dx.doi.org/10.1007/s13398-019-00667-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13398-019-00667-8" target="_blank" >10.1007/s13398-019-00667-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Josefson–Nissenzweig property for Cp-spaces

  • Original language description

    The famous Rosenthal–Lacey theorem asserts that for each infinite compact space K the Banach space C(K) admits a quotient isomorphic to Banach spaces c or ℓ 2 . The aim of the paper is to study a natural variant of this result for the space C p (X) of continuous real-valued maps on a Tychonoff space X with the pointwise topology. Following Josefson–Nissenzweig theorem for infinite-dimensional Banach spaces we introduce a corresponding property (called Josefson–Nissenzweig property, briefly, the JNP) for C p (X) -spaces. We prove: for a Tychonoff space X the space C p (X) satisfies the JNP if and only if C p (X) has a quotient isomorphic to c0:={(xn)n∈N∈RN:xn→0} (with the product topology of R N ) if and only if C p (X) contains a complemented subspace isomorphic to c. The last statement provides a C p -version of the Cembranos theorem stating that the Banach space C(K) is not a Grothendieck space if and only if C(K) contains a complemented copy of the Banach space c with the sup-norm topology. For a pseudocompact space X the space C p (X) has the JNP if and only if C p (X) has a complemented metrizable infinite-dimensional subspace. An example of a compact space K without infinite convergent sequences with C p (K) containing a complemented subspace isomorphic to c is given.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales

  • ISSN

    1578-7303

  • e-ISSN

  • Volume of the periodical

    113

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    ES - SPAIN

  • Number of pages

    16

  • Pages from-to

    3015-3030

  • UT code for WoS article

    000483725900005

  • EID of the result in the Scopus database

    2-s2.0-85064475223