Josefson–Nissenzweig property for Cp-spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00508352" target="_blank" >RIV/67985840:_____/19:00508352 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s13398-019-00667-8" target="_blank" >http://dx.doi.org/10.1007/s13398-019-00667-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13398-019-00667-8" target="_blank" >10.1007/s13398-019-00667-8</a>
Alternative languages
Result language
angličtina
Original language name
Josefson–Nissenzweig property for Cp-spaces
Original language description
The famous Rosenthal–Lacey theorem asserts that for each infinite compact space K the Banach space C(K) admits a quotient isomorphic to Banach spaces c or ℓ 2 . The aim of the paper is to study a natural variant of this result for the space C p (X) of continuous real-valued maps on a Tychonoff space X with the pointwise topology. Following Josefson–Nissenzweig theorem for infinite-dimensional Banach spaces we introduce a corresponding property (called Josefson–Nissenzweig property, briefly, the JNP) for C p (X) -spaces. We prove: for a Tychonoff space X the space C p (X) satisfies the JNP if and only if C p (X) has a quotient isomorphic to c0:={(xn)n∈N∈RN:xn→0} (with the product topology of R N ) if and only if C p (X) contains a complemented subspace isomorphic to c. The last statement provides a C p -version of the Cembranos theorem stating that the Banach space C(K) is not a Grothendieck space if and only if C(K) contains a complemented copy of the Banach space c with the sup-norm topology. For a pseudocompact space X the space C p (X) has the JNP if and only if C p (X) has a complemented metrizable infinite-dimensional subspace. An example of a compact space K without infinite convergent sequences with C p (K) containing a complemented subspace isomorphic to c is given.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales
ISSN
1578-7303
e-ISSN
—
Volume of the periodical
113
Issue of the periodical within the volume
4
Country of publishing house
ES - SPAIN
Number of pages
16
Pages from-to
3015-3030
UT code for WoS article
000483725900005
EID of the result in the Scopus database
2-s2.0-85064475223