Separable (and metrizable) infinite dimensional quotients of Cp(X) and Cc(X) spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00505923" target="_blank" >RIV/67985840:_____/19:00505923 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-17376-0_10" target="_blank" >http://dx.doi.org/10.1007/978-3-030-17376-0_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-17376-0_10" target="_blank" >10.1007/978-3-030-17376-0_10</a>
Alternative languages
Result language
angličtina
Original language name
Separable (and metrizable) infinite dimensional quotients of Cp(X) and Cc(X) spaces
Original language description
The famous Rosenthal-Lacey theorem states that for each infinite compact set K the Banach space C(K) of continuous real-valued functions on a compact space K admits a quotient which is either an isomorphic copy of c or ℓ2. Whether C(K) admits an infinite dimensional separable (or even metrizable) Hausdorff quotient when the uniform topology of C(K) is replaced by the pointwise topology remains as an open question. The present survey paper gathers several results concerning this question for the space Cp(K) of continuous real-valued functions endowed with the pointwise topology. Among others, that Cp(K) has an infinite dimensional separable quotient for any compact space K containing a opy of βN. Consequently, this result reduces the above question to the case when K is a Efimov space (i.e. K is an infinite compact space that contains neither a non-trivial convergent sequence nor a copy of βN). On the other hand, although it is unknown if Efimov spaces exist in ZFC, we note under (applying some result due to R. de la Vega), that for some Efimov space K the space Cp(K) has an infinite dimensional (even metrizable) separable quotient. The last part discusses the so-called Josefson–Nissenzweig property for spaces Cp(K), introduced recently in [3], and its relation with the separable quotient problem for spaces Cp(K).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Descriptive Topology and Functional Analysis II
ISBN
978-3-030-17375-3
ISSN
2194-1009
e-ISSN
—
Number of pages
15
Pages from-to
175-189
Publisher name
Springer
Place of publication
Cham
Event location
Elche
Event date
Jun 7, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—