All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Separable (and metrizable) infinite dimensional quotients of Cp(X) and Cc(X) spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00505923" target="_blank" >RIV/67985840:_____/19:00505923 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-17376-0_10" target="_blank" >http://dx.doi.org/10.1007/978-3-030-17376-0_10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-17376-0_10" target="_blank" >10.1007/978-3-030-17376-0_10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Separable (and metrizable) infinite dimensional quotients of Cp(X) and Cc(X) spaces

  • Original language description

    The famous Rosenthal-Lacey theorem states that for each infinite compact set K the Banach space C(K) of continuous real-valued functions on a compact space K admits a quotient which is either an isomorphic copy of c or ℓ2. Whether C(K) admits an infinite dimensional separable (or even metrizable) Hausdorff quotient when the uniform topology of C(K) is replaced by the pointwise topology remains as an open question. The present survey paper gathers several results concerning this question for the space Cp(K) of continuous real-valued functions endowed with the pointwise topology. Among others, that Cp(K) has an infinite dimensional separable quotient for any compact space K containing a opy of βN. Consequently, this result reduces the above question to the case when K is a Efimov space (i.e. K is an infinite compact space that contains neither a non-trivial convergent sequence nor a copy of βN). On the other hand, although it is unknown if Efimov spaces exist in ZFC, we note under (applying some result due to R. de la Vega), that for some Efimov space K the space Cp(K) has an infinite dimensional (even metrizable) separable quotient. The last part discusses the so-called Josefson–Nissenzweig property for spaces Cp(K), introduced recently in [3], and its relation with the separable quotient problem for spaces Cp(K).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Descriptive Topology and Functional Analysis II

  • ISBN

    978-3-030-17375-3

  • ISSN

    2194-1009

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    175-189

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Elche

  • Event date

    Jun 7, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article