All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Metrizable quotients of Cp-spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00493785" target="_blank" >RIV/67985840:_____/18:00493785 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.topol.2018.09.012" target="_blank" >http://dx.doi.org/10.1016/j.topol.2018.09.012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.topol.2018.09.012" target="_blank" >10.1016/j.topol.2018.09.012</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Metrizable quotients of Cp-spaces

  • Original language description

    The famous Rosenthal–Lacey theorem asserts that for each infinite compact set K the Banach space C(K) admits a quotient which is either an isomorphic copy of c or ℓ2. What is the case when the uniform topology of C(K) is replaced by the pointwise topology? Is it true that Cp(X) always has an infinite-dimensional separable (or better metrizable) quotient? In this paper we prove that for a Tychonoff space X the function space Cp(X) has an infinite-dimensional metrizable quotient if X either contains an infinite discrete C⁎-embedded subspace or else X has a sequence (Kn)nin N of infinite compact subsets such that for every n the space Kn contains two disjoint topological copies of Kn+1. Applying the latter result, we show that under ◊ there exists a zero-dimensional Efimov space K whose function space Cp(K) has an infinite-dimensional metrizable quotient. These two theorems essentially improve earlier results of Ka̧kol and Śliwa on infinite-dimensional separable quotients of Cp-spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Topology and its Applications

  • ISSN

    0166-8641

  • e-ISSN

  • Volume of the periodical

    249

  • Issue of the periodical within the volume

    1 November

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

    95-102

  • UT code for WoS article

    000449136000008

  • EID of the result in the Scopus database

    2-s2.0-85053511144