Lipschitz algebras and Lipschitz-free spaces over unbounded metric spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00562919" target="_blank" >RIV/67985840:_____/22:00562919 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/22:10456417
Result on the web
<a href="https://doi.org/10.1093/imrn/rnab193" target="_blank" >https://doi.org/10.1093/imrn/rnab193</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imrn/rnab193" target="_blank" >10.1093/imrn/rnab193</a>
Alternative languages
Result language
angličtina
Original language name
Lipschitz algebras and Lipschitz-free spaces over unbounded metric spaces
Original language description
We investigate a way to turn an arbitrary (usually, unbounded) metric space M into a bounded metric space B in such a way that the corresponding Lipschitz-free spaces F(M) and F(B) are isomorphic. The construction we provide is functorial in a weak sense and has the advantage of being explicit. Apart from its intrinsic theoretical interest, it has many applications in that it allows to transfer many arguments valid for Lipschitz-free spaces over bounded spaces to Lipschitz-free spaces over unbounded spaces. Furthermore, we show that with a slightly modified pointwise multiplication, the space Lip0(M) of scalar-valued Lipschitz functions vanishing at zero over any (unbounded) pointed metric space is a Banach algebra with its canonical Lipschitz norm.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-31529X" target="_blank" >GX20-31529X: Abstract convergence schemes and their complexities</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Mathematics Research Notices
ISSN
1073-7928
e-ISSN
1687-0247
Volume of the periodical
2022
Issue of the periodical within the volume
20
Country of publishing house
US - UNITED STATES
Number of pages
36
Pages from-to
16327-16362
UT code for WoS article
000756558600001
EID of the result in the Scopus database
2-s2.0-85134338207