Projections in Lipschitz-free spaces induced by group actions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00575127" target="_blank" >RIV/67985840:_____/23:00575127 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/23:10475536
Result on the web
<a href="https://doi.org/10.1002/mana.202100222" target="_blank" >https://doi.org/10.1002/mana.202100222</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202100222" target="_blank" >10.1002/mana.202100222</a>
Alternative languages
Result language
angličtina
Original language name
Projections in Lipschitz-free spaces induced by group actions
Original language description
We show that given a compact group G acting continuously on a metric space (Figure presented.) by bi-Lipschitz bijections with uniformly bounded norms, the Lipschitz-free space over the space of orbits (Figure presented.) (endowed with Hausdorff distance) is complemented in the Lipschitz-free space over (Figure presented.). We also investigate the more general case when G is amenable, locally compact or SIN and its action has bounded orbits. Then, we get that the space of Lipschitz functions (Figure presented.) is complemented in (Figure presented.). Moreover, if the Lipschitz-free space over (Figure presented.), (Figure presented.), is complemented in its bidual, several sufficient conditions on when (Figure presented.) is complemented in (Figure presented.) are given. Some applications are discussed. The paper contains preliminaries on projections induced by actions of amenable groups on general Banach spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ19-05271Y" target="_blank" >GJ19-05271Y: Groups and their actions, operator algebras, and descriptive set theory</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
296
Issue of the periodical within the volume
8
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
3301-3317
UT code for WoS article
000977802500001
EID of the result in the Scopus database
2-s2.0-85158073259