Approximation and Schur properties for Lipschitz free spaces over compact metric spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00242805" target="_blank" >RIV/68407700:21230/16:00242805 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/16:00459053
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Approximation and Schur properties for Lipschitz free spaces over compact metric spaces
Original language description
We prove that for any separable Banach space X, there exists a compact metric space which is homeomorphic to the Cantor space and whose Lipschitz-free space contains a complemented subspace isomorphic to X. As a consequence we give an example of a compact metric space which is homeomorphic to the Cantor space and whose Lipschitz-free space fails the approximation property and we prove that there exists an uncountable family of topologically equivalent distances on the Cantor space whose free spaces are pairwise non isomorphic. We also prove that the free space over a countable compact metric space has the Schur property. These results answer questions by G. Godefroy.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bull.Soc.Math.Belg
ISSN
1370-1444
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
1
Country of publishing house
BE - BELGIUM
Number of pages
10
Pages from-to
63-72
UT code for WoS article
000373649200005
EID of the result in the Scopus database
—