Approximation properties in Lipschitz-free spaces over groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00556581" target="_blank" >RIV/67985840:_____/22:00556581 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1112/jlms.12544" target="_blank" >https://doi.org/10.1112/jlms.12544</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/jlms.12544" target="_blank" >10.1112/jlms.12544</a>
Alternative languages
Result language
angličtina
Original language name
Approximation properties in Lipschitz-free spaces over groups
Original language description
We study Lipschitz-free spaces over compact and uniformly discrete metric spaces enjoying certain high regularity properties - having group structure with left-invariant metric. Using methods of harmonic analysis we show that, given a compact metrizable group ???? equipped with an arbitrary compatible left-invariant metric ???? , the Lipschitz-free space over ???? , ℱ(????,????) , satisfies the metric approximation property. We show also that, given a finitely generated group ???? , with its word metric ???? , from a class of groups admitting a certain special type of combing, which includes all hyperbolic groups and Artin groups of large type, ℱ(????,????) has a Schauder basis. Examples and applications are discussed. In particular, for any net ???? in a real hyperbolic ???? -space ℍ???? , ℱ(????) has a Schauder basis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ19-05271Y" target="_blank" >GJ19-05271Y: Groups and their actions, operator algebras, and descriptive set theory</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the London Mathematical Society
ISSN
0024-6107
e-ISSN
1469-7750
Volume of the periodical
105
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
21
Pages from-to
1681-1701
UT code for WoS article
000762952500001
EID of the result in the Scopus database
2-s2.0-85125437122