Deciding the Existence of Minority Terms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423138" target="_blank" >RIV/00216208:11320/20:10423138 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y.cOz4tbI_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y.cOz4tbI_</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4153/S0008439519000651" target="_blank" >10.4153/S0008439519000651</a>
Alternative languages
Result language
angličtina
Original language name
Deciding the Existence of Minority Terms
Original language description
This paper investigates the computational complexity of deciding if a given finite idempotent algebra has a ternary term operation m that satisfies the minority equations m (y, x, x) approximate to m(x, y, x) approximate to m (x x, y) approximate to y. We show that a common polynomial-time approach to testing for this type of condition will not work in this case and that this decision problem lies in the class NP.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Canadian Mathematical Bulletin
ISSN
0008-4395
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
63
Country of publishing house
CA - CANADA
Number of pages
15
Pages from-to
577-591
UT code for WoS article
000569297700008
EID of the result in the Scopus database
2-s2.0-85091866871