All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deciding the Existence of Minority Terms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423138" target="_blank" >RIV/00216208:11320/20:10423138 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y.cOz4tbI_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y.cOz4tbI_</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4153/S0008439519000651" target="_blank" >10.4153/S0008439519000651</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deciding the Existence of Minority Terms

  • Original language description

    This paper investigates the computational complexity of deciding if a given finite idempotent algebra has a ternary term operation m that satisfies the minority equations m (y, x, x) approximate to m(x, y, x) approximate to m (x x, y) approximate to y. We show that a common polynomial-time approach to testing for this type of condition will not work in this case and that this decision problem lies in the class NP.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Canadian Mathematical Bulletin

  • ISSN

    0008-4395

  • e-ISSN

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    63

  • Country of publishing house

    CA - CANADA

  • Number of pages

    15

  • Pages from-to

    577-591

  • UT code for WoS article

    000569297700008

  • EID of the result in the Scopus database

    2-s2.0-85091866871