Configurations in coproducts of Priestley spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F05%3A00001364" target="_blank" >RIV/00216208:11320/05:00001364 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Configurations in coproducts of Priestley spaces
Original language description
Let P be a configuration, i.e., a finite poset with top element. Let F(P) be the class of bounded distributive lattices L whose Priestley space P(L) contains no copy of $P$. The following are equivalent: F(P) is first-order definable, i.e., there is a set of first-order sentences in the language of bounded lattice theory whose satisfaction characterizes membership in F(P); P is coproductive, i.e., P embeds in a coproduct of Priestley spaces iff it embeds in one of the summands; P is a tree. In the restricted context of Heyting algebras, these onditions are also equivalent to $fb(P)$ being a variety, or even a quasivariety.
Czech name
Konfigurace v koproduktech Priestleyovských prostorů
Czech description
Pro konečnou konfiguraci P s největším prvkem je ekvivalentní: příslušná třída F(P) distributivních svazů je axiomatisovatelná, P je koproduktivní, P je strom.estarting automaton. Here we study the power of such constraints on computations of this
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Categorical Structures
ISSN
0927-2852
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
121-130
UT code for WoS article
—
EID of the result in the Scopus database
—