CONSTRAINT SATISFACTION PROBLEMS FOR REDUCTS OF HOMOGENEOUS GRAPHS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10402073" target="_blank" >RIV/00216208:11320/19:10402073 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JyMS-LdgAr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JyMS-LdgAr</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/16M1082974" target="_blank" >10.1137/16M1082974</a>
Alternative languages
Result language
angličtina
Original language name
CONSTRAINT SATISFACTION PROBLEMS FOR REDUCTS OF HOMOGENEOUS GRAPHS
Original language description
For n >= 3, let (H-n, E) denote the nth Henson graph, i.e., the unique countable homogeneous graph with exactly those finite graphs as induced subgraphs that do not embed the complete graph on n vertices. We show that for all structures Gamma with domain H-n whose relations are first-order definable in (H-n, E) the constraint satisfaction problem for F either is in P or is NP-complete. We moreover show a similar complexity dichotomy for all structures whose relations are first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation. Together with earlier results, in particular for the random graph, this completes the complexity classification of constraint satisfaction problems of structures first-order definable in countably infinite homogeneous graphs: all such problems are either in P or NP-complete.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Computing
ISSN
0097-5397
e-ISSN
—
Volume of the periodical
2019
Issue of the periodical within the volume
48
Country of publishing house
US - UNITED STATES
Number of pages
41
Pages from-to
1224-1264
UT code for WoS article
000483940500003
EID of the result in the Scopus database
2-s2.0-85072740831