All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CONSTRAINT SATISFACTION PROBLEMS FOR REDUCTS OF HOMOGENEOUS GRAPHS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10402073" target="_blank" >RIV/00216208:11320/19:10402073 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JyMS-LdgAr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JyMS-LdgAr</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/16M1082974" target="_blank" >10.1137/16M1082974</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CONSTRAINT SATISFACTION PROBLEMS FOR REDUCTS OF HOMOGENEOUS GRAPHS

  • Original language description

    For n &gt;= 3, let (H-n, E) denote the nth Henson graph, i.e., the unique countable homogeneous graph with exactly those finite graphs as induced subgraphs that do not embed the complete graph on n vertices. We show that for all structures Gamma with domain H-n whose relations are first-order definable in (H-n, E) the constraint satisfaction problem for F either is in P or is NP-complete. We moreover show a similar complexity dichotomy for all structures whose relations are first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation. Together with earlier results, in particular for the random graph, this completes the complexity classification of constraint satisfaction problems of structures first-order definable in countably infinite homogeneous graphs: all such problems are either in P or NP-complete.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Computing

  • ISSN

    0097-5397

  • e-ISSN

  • Volume of the periodical

    2019

  • Issue of the periodical within the volume

    48

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    41

  • Pages from-to

    1224-1264

  • UT code for WoS article

    000483940500003

  • EID of the result in the Scopus database

    2-s2.0-85072740831