All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Constraint Satisfaction Problems for Reducts of Homogeneous Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331277" target="_blank" >RIV/00216208:11320/16:10331277 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.119" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.119</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.119" target="_blank" >10.4230/LIPIcs.ICALP.2016.119</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Constraint Satisfaction Problems for Reducts of Homogeneous Graphs

  • Original language description

    For nGREATER-THAN OR EQUAL TO3 , let (H n ,E) denote the n -th Henson graph, i.e., the unique countable homogeneous graph with exactly those finite graphs as induced subgraphs that do not embed the complete graph on n vertices. We show that for all structures Γ with domain H n whose relations are first-order definable in (H n ,E) the constraint satisfaction problem for Γ is either in P or is NP-complete. We moreover show a similar complexity dichotomy for all structures whose relations are first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation. Together with earlier results, in particular for the random graph, this completes the complexity classification of constraint satisfaction problems of structures first-order definable in countably infinite homogeneous graphs: all such problems are either in P or NP-complete.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Leibniz international proceedings in informatics

  • ISBN

    978-3-95977-013-2

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    1-14

  • Publisher name

    Dagstuhl Publishing

  • Place of publication

    Německo

  • Event location

    Roma, Itálie

  • Event date

    Jul 12, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article