Constraint Satisfaction Problems for Reducts of Homogeneous Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F16%3A10331277" target="_blank" >RIV/00216208:11320/16:10331277 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.119" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.119</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.119" target="_blank" >10.4230/LIPIcs.ICALP.2016.119</a>
Alternative languages
Result language
angličtina
Original language name
Constraint Satisfaction Problems for Reducts of Homogeneous Graphs
Original language description
For nGREATER-THAN OR EQUAL TO3 , let (H n ,E) denote the n -th Henson graph, i.e., the unique countable homogeneous graph with exactly those finite graphs as induced subgraphs that do not embed the complete graph on n vertices. We show that for all structures Γ with domain H n whose relations are first-order definable in (H n ,E) the constraint satisfaction problem for Γ is either in P or is NP-complete. We moreover show a similar complexity dichotomy for all structures whose relations are first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation. Together with earlier results, in particular for the random graph, this completes the complexity classification of constraint satisfaction problems of structures first-order definable in countably infinite homogeneous graphs: all such problems are either in P or NP-complete.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Leibniz international proceedings in informatics
ISBN
978-3-95977-013-2
ISSN
1868-8969
e-ISSN
—
Number of pages
14
Pages from-to
1-14
Publisher name
Dagstuhl Publishing
Place of publication
Německo
Event location
Roma, Itálie
Event date
Jul 12, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—