Short Definitions in Constraint Languages
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471838" target="_blank" >RIV/00216208:11320/23:10471838 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.MFCS.2023.28" target="_blank" >https://doi.org/10.4230/LIPIcs.MFCS.2023.28</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2023.28" target="_blank" >10.4230/LIPIcs.MFCS.2023.28</a>
Alternative languages
Result language
angličtina
Original language name
Short Definitions in Constraint Languages
Original language description
A first-order formula is called primitive positive (pp) if it only admits the use of existential quantifiers and conjunction. Pp-formulas are a central concept in (fixed-template) constraint satisfaction since CSP(Γ) can be viewed as the problem of deciding the primitive positive theory of Γ, and pp-definability captures gadget reductions between CSPs. An important class of tractable constraint languages Γ is characterized by having few subpowers, that is, the number of n-ary relations pp-definable from Γ is bounded by 2^p(n) for some polynomial p(n). In this paper we study a restriction of this property, stating that every pp-definable relation is definable by a pp-formula of polynomial length. We conjecture that the existence of such short definitions is actually equivalent to Γ having few subpowers, and verify this conjecture for a large subclass that, in particular, includes all constraint languages on three-element domains. We furthermore discuss how our conjecture imposes an upper complexity bound of co-NP on the subpower membership problem of algebras with few subpowers.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LTAUSA19070" target="_blank" >LTAUSA19070: Commutators, quasigroups and Yang Baxter equation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)
ISBN
978-3-95977-292-1
ISSN
—
e-ISSN
—
Number of pages
14
Pages from-to
2-15
Publisher name
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Place of publication
Leibniz
Event location
Bordeaux
Event date
Aug 28, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—