Low degree connectivity in ad-hoc networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F05%3A00206154" target="_blank" >RIV/00216208:11320/05:00206154 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Low degree connectivity in ad-hoc networks
Original language description
The aim of the paper is to investigate the average case behavior of certain algorithms that are designed for connecting mobile agents in the two- or three-dimensional space. The general model is the following: let $X$ be a set of points in the $d$-dimensional Euclidean space $E_d$, $dge 2$, $r$ be a function that associates each element of $xin X$ with a positive real number $r(x)$. A graph $G(X,r)$ is an oriented graph with the vertex set $X$, in which $(x,y)$ is an edge if and only if $rho(x,y)ler(x)$, where $rho(x,y)$ denotes the Euclidean distance in the space $E_d$. Given a set $X$, the goal is to find a function $r$ so that the graph $G(X,r)$ is strongly connected (note that the graph $G(X,r)$ need not be symmetric). The function $r$ computed by the algorithm of the present paper is such that, given a random set $X$ of points, the average value of $r(x)^d$ (related to the average transmitter power) is almost surely constant.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Algorithms - ESA 2005
ISBN
3-540-29118-0
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
—
Publisher name
Springer
Place of publication
Berlin
Event location
Berlin
Event date
Jan 1, 2005
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000233893100020