All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On edges crossing few other edges in simple topological complete graphs

Result description

Let $h=h(n)$ be the smallest integer such that every simple topological complete graph on $n$ vertices contains an edge crossing at most $h$ other edges. We show that $Omega(n^{3/2})le h(n) le O(n^2/log^{1/4}n)$. We also show that the analogous function on other surfaces (torus, Klein bottle) grows as $cn^2$.

Keywords

edgescrossingedgessimpletopologicalcompletegraphs

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    On edges crossing few other edges in simple topological complete graphs

  • Original language description

    Let $h=h(n)$ be the smallest integer such that every simple topological complete graph on $n$ vertices contains an edge crossing at most $h$ other edges. We show that $Omega(n^{3/2})le h(n) le O(n^2/log^{1/4}n)$. We also show that the analogous function on other surfaces (torus, Klein bottle) grows as $cn^2$.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Graph Drawing

  • ISBN

    3-540-31425-3

  • ISSN

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Berlin

  • Event date

    Jan 1, 2006

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000235806300025

Basic information

Result type

D - Article in proceedings

D

CEP

BA - General mathematics

Year of implementation

2006