On edges crossing few other edges in simple topological complete graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00206355" target="_blank" >RIV/00216208:11320/09:00206355 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On edges crossing few other edges in simple topological complete graphs
Original language description
Let h = h(n) be the smallest integer such that every simple topological complete graph on n vertices contains an edge crossing at most h other edges. We show that Omega(n^(3/2)) {= h(n) {= O(n^2 / log^{1/4} n). We also show that the analogous function onother surfaces (torus, Klein bottle) grows as cn^2.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
309
Issue of the periodical within the volume
7
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
7
Pages from-to
—
UT code for WoS article
000264958900010
EID of the result in the Scopus database
—