(I)-envelopes of closed convex sets in Banach spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F07%3A00004255" target="_blank" >RIV/00216208:11320/07:00004255 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
(I)-envelopes of closed convex sets in Banach spaces
Original language description
We study the notion of (I)-generating introduced by V. Fonf and J. Lindendstrauss and a related notion of (I)-envelope. As a consequence of our results we get an easy proof of the James characterization of weak compactness in Banach spaces with weak* angelic dual unit ball and an easy proof of the James characterization of reflexivity within a large class of spaces. We also show by an example that the general James theorem cannot be proved by this method.
Czech name
(I)-obálky uzavřených konvexních množin v Banachových prostorech
Czech description
Studujeme pojem (I)-generování zavedený V.Fonfem a J.Lindenstraussem a související pojem (I)-obálky. Dostáváme snadný důkaz Jamesovy věty pro prostory s w*-andělskou duální koulí. Na příkladu ukazujeme, že takto nelze snadno dokázat obecnou Jamesovu větu.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F06%2F0018" target="_blank" >GA201/06/0018: Topological structures in functional analysis</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
—
Volume of the periodical
162
Issue of the periodical within the volume
1
Country of publishing house
IL - THE STATE OF ISRAEL
Number of pages
25
Pages from-to
157-181
UT code for WoS article
—
EID of the result in the Scopus database
—