All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

(I)-envelopes of unit balls and James' characterization of reflexivity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F07%3A00004440" target="_blank" >RIV/00216208:11320/07:00004440 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    (I)-envelopes of unit balls and James' characterization of reflexivity

  • Original language description

    We study the (I)-envelopes of the unit balls of Banach spaces. We show, in particular, that any nonreflexive space can be renormed such that the (I)-envelope of the unit ball is not the whole bidual unit ball. Further, we give a simpler proof of the James' characterization of reflexivity in nonseparable case. We also study the spaces in which the (I)-envelope of the unit ball adds nothing.

  • Czech name

    (I)-obálky jednotkových koulí a Jamesova charakterizace reflexivity

  • Czech description

    Studujeme (I)-obálky jednotkových koulí v Banachových prostorech s ohledem na extrémní případy (kdy (I)-obálka je celá biduální koule a kdy nepřidá nic). Také uvádíme jednodušší důkaz Jamesovy charakterizace reflexivity.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F06%2F0018" target="_blank" >GA201/06/0018: Topological structures in functional analysis</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia Mathematica

  • ISSN

    0039-3223

  • e-ISSN

  • Volume of the periodical

    182

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    12

  • Pages from-to

    29-40

  • UT code for WoS article

  • EID of the result in the Scopus database