All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A quadratic lower bound for subset sums

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F07%3A00004962" target="_blank" >RIV/00216208:11320/07:00004962 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A quadratic lower bound for subset sums

  • Original language description

    Let A be a finite nonempty subset of an additive abelian group G, and let Sigma(A) denote the set of all group elements representable as a sum of some subset of A. We prove that |Sigma(A)| >= |H| + 1/64 |A H|^2 where H is the stabilizer of Sigma(A). Our result implies that Sigma(A) = Z/nZ for every set A of units of Z/nZ with |A| ge 8 sqrt{n}. This consequence was first proved by ErdH{o}s and Heilbronn for n prime, and by Vu (with a weaker constant) for general n.

  • Czech name

    Kvadratický dolní odhad pro součty podmnožiny

  • Czech description

    Označme A konečnou podmnožinu aditivní abelovské grupy G, a Sigma(A) množinu všech prvků grupy reprezentovatelných jako součet podmnožiny A. Dokážeme, že |Sigma(A)| >= |H| + 1/64 |A H|^2, kde H je stabilizer Sigma(A). Odtud plyne, že Sigma(A) = Z/nZ pro každou množinu A invertibilních prvků v Z/nZ$, když |A| ge 8 sqrt{n}. Tento důsledek dokázali Erdos a Heilbronn pro n prvočíslo, a Vu (se slabší konstantou) pro obecné n.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Arithmetica

  • ISSN

    0065-1036

  • e-ISSN

  • Volume of the periodical

    129

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    PL - POLAND

  • Number of pages

    9

  • Pages from-to

    187-195

  • UT code for WoS article

  • EID of the result in the Scopus database