A simple proof for open cups and caps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F07%3A00005045" target="_blank" >RIV/00216208:11320/07:00005045 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A simple proof for open cups and caps
Original language description
A set of points is a cup, if it lies on the graph of convex function. Similarly a set of points is a cap, if it lies on concave function. A cup/cap is open, if there is no point above the cup/cap. There is a Ramsey-type theorem, which says that if N is sufficiently large, we always find either open cup of size k or open cap of size l. We present a simple proof for open cups and open caps. Moreover we improve the bounds on N.
Czech name
Krátký důkaz pro otevřené šálky a čepice
Czech description
Mnozina bodu v rovine je salek, pokud lezi na grafu konvexni funkce. Podobne mnozina bodu je cepice, pokud lezi na grafu konkavni funkce. Mnozina je otevrene, pokud nad ni nelezi zadny dalsi bod. Ukazujeme jednoduchy dukaz vety, ze pro dostatecne velke N, kazda N-bodova mnozina v rovine obsahuje bud salek velikosti k a nebo cepici velikosti l.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
218-226
UT code for WoS article
—
EID of the result in the Scopus database
—