All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ideals in Heyting semilattices and open homomorphisms

Result description

In the general context of Heyting lattices, the ideals, an extension of the concept of the sublocale set of a locale, are studied. Among other the class of Heyting lattices (and in particular the class of locales) in which open homomorphisms coincide with the complete ones, is characterized.

Keywords

IdealsHeytingsemilatticeshomomorphisms

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ideals in Heyting semilattices and open homomorphisms

  • Original language description

    In the general context of Heyting lattices, the ideals, an extension of the concept of the sublocale set of a locale, are studied. Among other the class of Heyting lattices (and in particular the class of locales) in which open homomorphisms coincide with the complete ones, is characterized.

  • Czech name

    Ideály v Heytingových polosvazech a otevřené homomorfismy

  • Czech description

    V obecném kontextu Heytingových polosvazů jsou studovány ideály jako přirozené rozšíření pojmu sublokálové podmožiny lokálů. Kromě jiného je podána charakteristika třídy Heytingových polosvazů (a speciálně třídy lokálů) v nichž otevřené homomorfismy jsouprávě úplné homomorfismy.

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Quaestiones Mathematicae

  • ISSN

    1607-3606

  • e-ISSN

  • Volume of the periodical

    30

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    000255036700001

  • EID of the result in the Scopus database

Basic information

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

BA - General mathematics

Year of implementation

2007