Filter theory of bounded residuated lattice ordered monoids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10219250" target="_blank" >RIV/61989592:15310/10:10219250 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27510/10:86075133
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Filter theory of bounded residuated lattice ordered monoids
Original language description
Bounded residuated lattice ordered monoids (Rl-monoids) are a common generalization of pseudo-BL-algebras and Heyting algebras. In the paper classes of filters of bounded Rl-monoids leading (in normal cases) to quotient algebras which are Heyting algebras, Boolean algebras and GMV-algebras (= pseudo-MV-algebras), respectively, are introduced and studied.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Multiple-Valued Logic and soft Computing
ISSN
1542-3980
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
—
UT code for WoS article
000277167200013
EID of the result in the Scopus database
—