All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Filter theory of bounded residuated lattice ordered monoids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10219250" target="_blank" >RIV/61989592:15310/10:10219250 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27510/10:86075133

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Filter theory of bounded residuated lattice ordered monoids

  • Original language description

    Bounded residuated lattice ordered monoids (Rl-monoids) are a common generalization of pseudo-BL-algebras and Heyting algebras. In the paper classes of filters of bounded Rl-monoids leading (in normal cases) to quotient algebras which are Heyting algebras, Boolean algebras and GMV-algebras (= pseudo-MV-algebras), respectively, are introduced and studied.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Multiple-Valued Logic and soft Computing

  • ISSN

    1542-3980

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

  • UT code for WoS article

    000277167200013

  • EID of the result in the Scopus database