Curves and surfaces represented by polynomial support fuctions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F08%3A00100603" target="_blank" >RIV/00216208:11320/08:00100603 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Curves and surfaces represented by polynomial support fuctions
Original language description
This paper studies shapes (curves and surfaces) which can be described by (piecewise) polynomial support functions. The class of these shapes is closed under convolutions, offsetting, rotations and translations. We give a geometric discussion of these shapes and present methods for the approximation of general curves and surfaces by them. Based on the rich theory of spherical spline functions, this leads to computational techniques for rational curves and surfaces with rational offsets, which can deal with shapes without inflections/parabolic points.
Czech name
Křivky a plochy reprezentované polynomiální opěrnou funkcí
Czech description
Tento článek suduje tvary (křivky a plochy), které mohou být popsány polynomiální opěrnou funkcí.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
392
Issue of the periodical within the volume
1-3
Country of publishing house
FR - FRANCE
Number of pages
17
Pages from-to
—
UT code for WoS article
000253871900011
EID of the result in the Scopus database
—