All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F08%3A00100837" target="_blank" >RIV/00216208:11320/08:00100837 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems

  • Original language description

    We consider the dynamics of the semiflow associated with a class of semilinear parabolic problems on a smooth bounded domain, posed with homogeneous Dirichlet boundary conditions. The distinguishing feature of this class is the indefinite superlinear (but subcritical) growth of the nonlinearity at infinity. We present new a priori bounds for global semiorbits that enable us to give dynamical proofs of known and new existence results for equilibria. In addition, we can prove the existence of connecting orbits in many cases. One advantage of our approach is that the parabolic semiflow is naturally order preserving, in contrast to pseudo-gradient flows considered when using variational methods. Therefore we can obtain much information on nodal propertiesof equilibria that was not known before.

  • Czech name

    Apriorní odhady, nodální ekvilibria a spojující orbity pro indefinitní superlineární parabolické problémy

  • Czech description

    Studujeme dynamiku toku asociovaného s třídou semilineárních parabolických problémů na hladké omezené oblasti doplněných homogenní Dirichletovou okrajovou podmínkou. Hlavním znakem studované třídy je indefinitní superlineární (ale podkritický) růst nelinearity v nekonečnu. Ukážeme nové apriorní odhady pro globální semiorbity, které umožňují dokázat některé známé i nové výsledky o existenci ekvilibrií pomocí dynamických metod. V mnoha pripadech navíc ukážeme existenci spojujících orbit. Jedna z výhod našeho přístupu je, že parabolický semitok přirozeně zachovává uspořádání, což kontrastuje s pseudo gradientním tokem, který se používá ve variačních metodách. To umožňuje získat mnoho nových vlastnotí ekvilibrií.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F03%2F0934" target="_blank" >GA201/03/0934: Nonlinear analysis in biomaterials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transactions of the American Mathematical Society

  • ISSN

    0002-9947

  • e-ISSN

  • Volume of the periodical

    360

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    47

  • Pages from-to

  • UT code for WoS article

    000254589400005

  • EID of the result in the Scopus database