All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An invariant set generated by the domain topology for parabolic semiflows with small diffusion

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F07%3A00005033" target="_blank" >RIV/00216208:11320/07:00005033 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    An invariant set generated by the domain topology for parabolic semiflows with small diffusion

  • Original language description

    We consider the singularly perturbed semilinear parabolic problem u_t-d^2Delta u+u=f(u) with homogeneous Neumann boundary conditions on a smoothly bounded domain Omegasubseteq{mathbb{R}}^N. Here f is superlinear at 0, and infinity and has subcriticalgrowth. For small d>0 we construct a compact connected invariant set X_d in the boundary of the domain of attraction of the asymptotically stable equilibrium $0$. The main features of $X_d$ are that it consists of positive functions that are pairwise non-comparable, and its topology is at least as rich as the topology of $partialOmega$ in a certain sense. If the number of equilibria in $X_d$ is finite, then this implies the existence of connecting orbits within $X_d$ that are not a consequence of a well known result by Matano.

  • Czech name

    Invariantní množina generovaná topologií oblasti pro parabolické polotoky s malou difuzí

  • Czech description

    Uvažujeme singulárně perturbovaný semilineární parabolický problém u_t-d^2Delta u+u=f(u) s homogenní Neumannovou okrajovou podmínkou na oblasti Omegasubseteq{mathbb{R}}^N s hladkou hranicí. Funkce f je superlineární v 0 a v nekonečnu a má podkritickýrůst. Pro malé d>0 konstuujeme kompatní, souvislou, invariantní množinu X_d v hranici oblasti přitažlivosti asymptoticky stabilního ekvilibria 0. Hlavní vlastností X_d je, že se skládá z neporovnatelných pozitivních funkcí a jeho topologie je alespoň tak bohatá jako topologie hranice Omega. Pokud je počet ekvilibrií v X_d konečný, existují spojující orbity v X_d, které nejsou důsledkem známého Matanova výsledku.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F06%2F0352" target="_blank" >GA201/06/0352: Incompressible fluids with complex rheology: mathematical analysis, computational simulations and optimization of their flows</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete and Continuous Dynamical Systems

  • ISSN

    1078-0947

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    613-628

  • UT code for WoS article

  • EID of the result in the Scopus database