Boundary value problems for semilinear Schrödinger equations with singular potentials and measure data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139545" target="_blank" >RIV/00216224:14310/24:00139545 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00208-023-02764-x" target="_blank" >https://link.springer.com/article/10.1007/s00208-023-02764-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00208-023-02764-x" target="_blank" >10.1007/s00208-023-02764-x</a>
Alternative languages
Result language
angličtina
Original language name
Boundary value problems for semilinear Schrödinger equations with singular potentials and measure data
Original language description
We study boundary value problems with measure data in smooth bounded domains Omega, for semilinear equations. Specifically we consider problems of the form - L(V)u + f (u) = tau in Omega and tr(V)u = nu on partial derivative Omega, where L-V = Delta + V, f. is an element of C(R) is monotone increasingwith f (0) = 0 and tr V u denotes themeasure boundary trace of u associated with L-V. The potential V is an element of C-1(Omega) typically blows up at a set F subset of partial derivative Omega as dist (x, F)(-2). In general the above boundary value problem may not have a solution. We are interested in questions related to the concept of 'reduced measures', introduced in Brezis et al. (Ann Math Stud 163:55-109, 20072007) for V = 0. Our results extend results of [4] and Brezis and Ponce (J Funct Anal 229(1):95-120, 2005) and apply to a larger class of nonlinear terms f. In the case of signed measures, some of the present results are new even for V = 0.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-17403S" target="_blank" >GA22-17403S: Nonlinear Schrödinger equations and systems with singular potentials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Annalen
ISSN
0025-5831
e-ISSN
1432-1807
Volume of the periodical
390
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
29
Pages from-to
351-379
UT code for WoS article
001118338300001
EID of the result in the Scopus database
2-s2.0-85178222888