Uniqueness of the critical point for semi-stable solutions in R-2
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00118868" target="_blank" >RIV/00216224:14310/21:00118868 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00526-020-01903-5" target="_blank" >https://link.springer.com/article/10.1007/s00526-020-01903-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00526-020-01903-5" target="_blank" >10.1007/s00526-020-01903-5</a>
Alternative languages
Result language
angličtina
Original language name
Uniqueness of the critical point for semi-stable solutions in R-2
Original language description
In this paper we show the uniqueness of the critical point for semi-stable solutions of the problem {-Delta u = f(u) in Omega u > 0 in Omega u = 0 on partial derivative Omega, where Omega subset of R-2 is a smooth bounded domain whose boundary has nonnegative curvature and f(0) >= 0. It extends a result by Cabre-Chanillo to the case where the curvature of partial derivative Omega vanishes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Linear and nonlinear elliptic equations with singular data and related problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Calculus of Variations and Partial Differential Equations
ISSN
0944-2669
e-ISSN
1432-0835
Volume of the periodical
60
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
13
Pages from-to
1-13
UT code for WoS article
000611978300015
EID of the result in the Scopus database
2-s2.0-85100095474