All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Generalized linear mixed model with a penalized Gaussian mixture as a random-effects distribution

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F08%3A00101115" target="_blank" >RIV/00216208:11320/08:00101115 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Generalized linear mixed model with a penalized Gaussian mixture as a random-effects distribution

  • Original language description

    Generalized linear mixed models are popular for regressing a discrete response when there is clustering, e.g. in longitudinal studies or in hierarchical data structures. It is standard to assume that the random effects have a normal distribution. Recently, it has been examined whether wrongly assuming a normal distribution for the random effects is important for the estimation of the fixed effects parameters. Since it is unclear whether the normality assumption is truly satisfied in practice, it is important that generalized mixed models are available which relax the normality assumption. A replacement of the normal distribution with a mixture of Gaussian distributions specified on a grid whereby only the weights of the mixture components are estimatedusing a penalized approach ensuring a smooth distribution for the random effects is proposed. The parameters of the model are estimated in a Bayesian context using MCMC techniques.

  • Czech name

    Zobecněný lineární smíšený model s penalizovanou gaussovskou směsí v rozdělení náhodných efektů

  • Czech description

    Zobecněný lineární smíšený model s penalizovanou gaussovskou směsí v rozdělení náhodných efektů.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computational Statistics and Data Analysis

  • ISSN

    0167-9473

  • e-ISSN

  • Volume of the periodical

    52

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    18

  • Pages from-to

  • UT code for WoS article

    000255145900011

  • EID of the result in the Scopus database