Combinatorial Alexander Duality - a Short and Elementary Proof
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00206710" target="_blank" >RIV/00216208:11320/09:00206710 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Combinatorial Alexander Duality - a Short and Elementary Proof
Original language description
Let X be a simplicial complex with ground set V. Define its Alexander dual as the simplicial complex X* = {sigma subset V| V setminus sigma not in X}. The combinatorial Alexander duality states that the ith reduced homology group of X is isomorphicto the (|V|-i-3)th reduced cohomology group of X* (over a given commutative ring R). We give a self-contained proof from the first principles accessible to a nonexpert.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Volume of the periodical
42, 2009
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
—
UT code for WoS article
000271198900005
EID of the result in the Scopus database
—