Model reduction using the Vorobyev moment problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00206748" target="_blank" >RIV/00216208:11320/09:00206748 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Model reduction using the Vorobyev moment problem
Original language description
In this paper we consider a general mathematical concept of matching moments model reduction. The idea of model reduction via matching moments is well known and widely used in approximation of dynamical systems, but it goes back to Stieltjes, with some preceding work done by Chebyshev and Heine. The algebraic moment matching problem can be formulated for a hermitian positive definite matrix as a variant of the Stieltjes moment problem and can be solved using Gauss-Christoffel quadrature. Using the operator moment problem suggested by Vorobyev, we will generalize model reduction based on matching moments to the non-Hermitian case in a straightforward way. Unlike in the model reduction literature, the presented proofs follow directly from the construction of the Vorobyev moment problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100300802" target="_blank" >IAA100300802: Theory of Krylov subspace methods and its relationship to other mathematical disciplines</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerical Algorithms
ISSN
1017-1398
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
—
UT code for WoS article
000266093300005
EID of the result in the Scopus database
—