Enumeration of simple complete topological graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00207010" target="_blank" >RIV/00216208:11320/09:00207010 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Enumeration of simple complete topological graphs
Original language description
We prove that the number of isomorphism classes of simple complete topological graphs on n vertices is 2^{Theta(n^4)}. We also show that the number of weak isomorphism classes of simple complete topological graphs with n vertices and n choose 4 crossings is at least 2^(n(log n-O(1))), which improves the estimate of Harborth and Mengersen.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
—
UT code for WoS article
000269117900012
EID of the result in the Scopus database
—