Improper colouring of unit disk graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00207017" target="_blank" >RIV/00216208:11320/09:00207017 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Improper colouring of unit disk graphs
Original language description
Motivated by a satellite communications problem, we consider a generalized coloring problem on unit disk graphs. A coloring is k-improper if no more than k neighbors of every vertex have the same colour as that assigned to the vertex. The k-improper chromatic number chi(k)(G) is the least number of colors needed in a k-improper coloring of a graph G. The main subject of this work is analyzing the complexity of computing chi(k) for the class of unit disk graphs and some related classes, e.g., hexagonal graphs and interval graphs. We show NP-completeness in many restricted cases and also provide both positive and negative approximability results. Because of the challenging nature of this topic, many seemingly simple questions remain: for example, it remains open to determine the complexity of computing chi(k) for unit interval graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Networks
ISSN
0028-3045
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
—
UT code for WoS article
000270263000004
EID of the result in the Scopus database
—