Dimension gaps between representability and collapsibility
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00207115" target="_blank" >RIV/00216208:11320/09:00207115 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Dimension gaps between representability and collapsibility
Original language description
A simplicial complex K is called d-representable if it is the nerve of a collection of convex sets in R^d; K is d-collapsible if it can be reduced to an empty complex by repeatedly removing a face of dimension at most d - 1 that is contained in a uniquemaximal face; and K is d-Leray if every induced subcomplex of K has vanishing homology of dimension d and larger. It is known that d-representable implies d-collapsible implies d-Leray, and no two of these notions coincide for d }= 2. The famous Helly theorem and other important results in discrete geometry can be regarded as results about d-representable complexes, and in many of these results, 'd-representable' in the assumption can be replaced by 'd-collapsible' or even 'd-Leray.' Zbytek anotace chybí kvůli limitu počtu znaků.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Volume of the periodical
42
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
—
UT code for WoS article
000271198900008
EID of the result in the Scopus database
—