d-collapsibility is NP complete for d greater or equal to 4
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10031823" target="_blank" >RIV/00216208:11320/10:10031823 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
d-collapsibility is NP complete for d greater or equal to 4
Original language description
A simplicial complex is d-collapsible if it can be reduced to an empty complex by repeatedly removing (collapsing) a face of dimension at most d-1 that is contained in a unique maximal face. We prove that the algorithmic question whether a given simplicial complex is d-collapsible is NP-complete for d greater or equal to 4 and polynomial time solvable for d at most 2. As an intermediate step, we prove that d-collapsibility can be recognized by the greedy algorithm for d at most 2, but the greedy algorithm does not work for d greater or equal 3. A simplicial complex is d-representable if it is the nerve of a collection of convex sets in R^d. The main motivation for studying d-collapsible complexes is that every d-representable complex is d-collapsible.We also observe that known results imply that analogical algorithmic question for d-representable complexes is NP-hard for d greater or equal to 2.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chicago Journal of Theoretical Computer Science
ISSN
1073-0486
e-ISSN
—
Volume of the periodical
Neuveden
Issue of the periodical within the volume
21. června
Country of publishing house
US - UNITED STATES
Number of pages
32
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—