$k$-chromatic number of graphs on surfaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00207123" target="_blank" >RIV/00216208:11320/09:00207123 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
$k$-chromatic number of graphs on surfaces
Original language description
Considering all partitions of the edges of a graph G to k parts, the the k-chromatic number of G is is the maximum of the sum of the chromatic numbers of the parts. We derive a Heawood-type formula for the k-chromatic number of graphs embedded in a fixedsurface, improving the previously known upper bounds. In infinitely many cases, the new upper bound coincides with the lower bound obtained from embedding disjoint cliques in the surface. In the proof of this result, we derive a variant of Euler's Formula for union of several graphs that might be interesting independently.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
—
UT code for WoS article
000263103400034
EID of the result in the Scopus database
—