All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

t-Strong cliques and the degree-diameter problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00112696" target="_blank" >RIV/00216224:14330/19:00112696 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1258/762" target="_blank" >http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1258/762</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    t-Strong cliques and the degree-diameter problem

  • Original language description

    For a graph G, L(G)(t) is the t-th power of the line graph of G that is, vertices of L(G)(t) are edges of G and two edges e, f is an element of E(G) are adjacent in L(G)(t) if G contains a path with at most t vertices that starts in a vertex of e and ends in a vertex of f. The t-strong chromatic index of G is the chromatic number of L(G)(t) and a t-strong clique in G is a clique in L(G)(t). Finding upper bounds for the t-strong chromatic index and t-strong clique are problems related to two famous problems: the conjecture of Erdos and NeAetfil concerning the strong chromatic index and the degree/diameter problem. We prove that the size of a t-strong clique in a graph with maximum degree Delta is at most 1.75 Delta(t) + O (Delta t(-1)), and for bipartite graphs the upper bound is at most Delta(t) + O (Delta t(-1)). We also show results for some special classes of graphs: K-1,K-r-free graphs and graphs with a large girth.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF16_027%2F0008360" target="_blank" >EF16_027/0008360: Postdoc@MUNI</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Mathematica Universitatis Comenianae

  • ISSN

    0231-6986

  • e-ISSN

    0862-9544

  • Volume of the periodical

    88

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    SK - SLOVAKIA

  • Number of pages

    5

  • Pages from-to

    1057-1061

  • UT code for WoS article

    000484349000109

  • EID of the result in the Scopus database

    2-s2.0-85074006394