t-Strong Cliques and the Degree-Diameter Problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00129841" target="_blank" >RIV/00216224:14330/21:00129841 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/21M1406970" target="_blank" >http://dx.doi.org/10.1137/21M1406970</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/21M1406970" target="_blank" >10.1137/21M1406970</a>
Alternative languages
Result language
angličtina
Original language name
t-Strong Cliques and the Degree-Diameter Problem
Original language description
For a graph G, L(G)t is the tth power of the line graph of G; that is, vertices of L(G)(t) are edges of G and two edges e, f epsilon E(G) are adjacent in L(G)(t) if G contains a path with at most t vertices that starts in a vertex of e and ends in a vertex of f. The distance-t chromatic index of G is the chromatic number of L(G)(t), and a t-strong clique in G is a clique in L(G)(t). Finding upper bounds for the distance-t chromatic index and t-strong clique are problems related to two famous problems: the conjecture of Erdos and Nesetril concerning the strong chromatic index, and the degree/diameter problem. We prove that the size of a t-strong clique in a graph with maximum degree Delta is at most 1.75(Delta)t + O (Delta(t-1)), and for bipartite graphs the upper bound is at most Delta(t) + O (Delta(t-1)). As a corollary, we obtain upper bounds of 1.881 Delta(t) + O (Delta(t-1)) and 1.9703 + O (Delta(t-1)) on the distance-t chromatic index of bipartite graphs and general graphs. We also show results for some special classes of graphs: K1,r-free graphs and graphs with a large girth.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Volume of the periodical
35
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
3017-3029
UT code for WoS article
000736744500030
EID of the result in the Scopus database
2-s2.0-85150241307