All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

t-Strong Cliques and the Degree-Diameter Problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00129841" target="_blank" >RIV/00216224:14330/21:00129841 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/21M1406970" target="_blank" >http://dx.doi.org/10.1137/21M1406970</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/21M1406970" target="_blank" >10.1137/21M1406970</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    t-Strong Cliques and the Degree-Diameter Problem

  • Original language description

    For a graph G, L(G)t is the tth power of the line graph of G; that is, vertices of L(G)(t) are edges of G and two edges e, f epsilon E(G) are adjacent in L(G)(t) if G contains a path with at most t vertices that starts in a vertex of e and ends in a vertex of f. The distance-t chromatic index of G is the chromatic number of L(G)(t), and a t-strong clique in G is a clique in L(G)(t). Finding upper bounds for the distance-t chromatic index and t-strong clique are problems related to two famous problems: the conjecture of Erdos and Nesetril concerning the strong chromatic index, and the degree/diameter problem. We prove that the size of a t-strong clique in a graph with maximum degree Delta is at most 1.75(Delta)t + O (Delta(t-1)), and for bipartite graphs the upper bound is at most Delta(t) + O (Delta(t-1)). As a corollary, we obtain upper bounds of 1.881 Delta(t) + O (Delta(t-1)) and 1.9703 + O (Delta(t-1)) on the distance-t chromatic index of bipartite graphs and general graphs. We also show results for some special classes of graphs: K1,r-free graphs and graphs with a large girth.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

  • Volume of the periodical

    35

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    3017-3029

  • UT code for WoS article

    000736744500030

  • EID of the result in the Scopus database

    2-s2.0-85150241307