All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Strong Cliques in Claw-Free Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00129837" target="_blank" >RIV/00216224:14330/21:00129837 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00373-021-02379-6" target="_blank" >http://dx.doi.org/10.1007/s00373-021-02379-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00373-021-02379-6" target="_blank" >10.1007/s00373-021-02379-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Strong Cliques in Claw-Free Graphs

  • Original language description

    For a graph G, L(G)(2) is the square of the line graph of G - that is, vertices of L(G)(2) are edges of G and two edges e, f is an element of EoGTHORN are adjacent in L(G)(2) if at least one vertex of e is adjacent to a vertex of f and e not equal f. The strong chromatic index of G, denoted by s'(G), is the chromatic number of L(G)(2). A strong clique in G is a clique in L(G())2. Finding a bound for the maximum size of a strong clique in a graph with given maximum degree is a problem connected to a famous conjecture of Erdos and Nes. etr.il concerning strong chromatic index of graphs. In this note we prove that a size of a strong clique in a claw-free graph with maximum degree triangle is at most triangle(2) + 1/2 triangle. This result improves the only known result 1:125 triangle(2) + triangle, which is a bound for the strong chromatic index of claw-free graphs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Graphs and Combinatorics

  • ISSN

    0911-0119

  • e-ISSN

  • Volume of the periodical

    37

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    2581-2593

  • UT code for WoS article

    000676086900002

  • EID of the result in the Scopus database

    2-s2.0-85111123933