Computability of Width of Submodular Partition Functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A10031828" target="_blank" >RIV/00216208:11320/09:10031828 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Computability of Width of Submodular Partition Functions
Original language description
The notion of submodular partition functions generalizes many of well-known tree decompositions of graphs. For fixed k, there are polynomial-time algorithms to determine whether a graph has tree-width, branch-width, etc. at most k. Contrary to these results, we show that there is no sub-exponential algorithm for determining whether the width of a given submodular partition function is at most two. In addition, we also develop another dual notion for submodular partition functions which is analogous to loose tangles for connectivity functions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Combinatorial Algorithms
ISBN
978-3-642-10216-5
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
—
Publisher name
Springer
Place of publication
Berlin
Event location
Hradec nad Moravicí
Event date
Jun 28, 2009
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000280084100043