All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On recognizing graphs by numbers of homomorphisms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10033302" target="_blank" >RIV/00216208:11320/10:10033302 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On recognizing graphs by numbers of homomorphisms

  • Original language description

    Let hom (G, H) be the number of homomorphisms from a graph G to a graph H. A well-known result of Lovász states that the function hom (?, H) from all graphs uniquely determines the graph H up to isomorphism. We study this function restricted to smaller classes of graphs. We show that several natural classes (2-degenerate graphs and graphs homomorphic to an arbitrary non-bipartite graph) are sufficient to recognize all graphs, and provide a description of graph properties that are recognizable by graphswith bounded tree-width.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000279945500006

  • EID of the result in the Scopus database