Distinguishing graphs by their left and right homomorphism profiles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10104595" target="_blank" >RIV/00216208:11320/11:10104595 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejc.2011.03.012" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2011.03.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2011.03.012" target="_blank" >10.1016/j.ejc.2011.03.012</a>
Alternative languages
Result language
angličtina
Original language name
Distinguishing graphs by their left and right homomorphism profiles
Original language description
We introduce a new property of graphs called ''q-state Potts uniqueness and relate it to chromatic and Tutte uniqueness, and also to ''chromatic-Flow uniqueness'', recently studied by Duan. Wu and Yu. We establish for which edge-weighted graphs H homomorphism functions from multigraphs G to H are specializations of the Tutte polynomial of G, in particular answering a question of Freedman, Lovasz and Schrijver. We also determine for which edge-weighted graphs H homomorphism functions from multigraphs G to H are specializations of the ''edge elimination polynomial'' of Averbouch, Godlin and Makowsky and the ''induced subgraph polynomial'' of Tittmann, Averbouch and Makowsky. Unifying the study of these and related problems is the notion of the left and right homomorphism profiles of a graph.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
32
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
1025-1053
UT code for WoS article
000294580100007
EID of the result in the Scopus database
—