Polynomial graph invariants from homomorphism numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10173153" target="_blank" >RIV/00216208:11320/13:10173153 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-88-7642-475-5_97" target="_blank" >http://dx.doi.org/10.1007/978-88-7642-475-5_97</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-88-7642-475-5_97" target="_blank" >10.1007/978-88-7642-475-5_97</a>
Alternative languages
Result language
angličtina
Original language name
Polynomial graph invariants from homomorphism numbers
Original language description
We give a method of generating strongly polynomial sequences of graphs. A classical example is the sequence of complete graphs, for which hom(G,K_k)=P(G;k) is the evaluation of the chromatic polynomial at k. Our construction produces a large family of graph polynomials that includes the Tutte polynomial, the Averbouch-Godlin-Makowsky polynomial and the Tittmann-Averbouch-Makowsky polynomial. We also introduce a new graph parameter, the branching core size of a simple graph, related to how many involutive automorphisms with fixed points it has. We prove that a countable family of graphs of bounded branching core size (which in particular implies bounded tree-depth) is always contained in a finite union of strongly polynomial sequences.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
The Seventh European Conference on Combinatorics, Graph Theory and Applications
ISBN
978-88-7642-474-8
ISSN
—
e-ISSN
—
Number of pages
2
Pages from-to
611-612
Publisher name
Scuola Normale Superiore
Place of publication
Pisa
Event location
Pisa
Event date
Sep 9, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—