The structure of Valdivia compact lines
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10049936" target="_blank" >RIV/00216208:11320/10:10049936 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/10:00342854
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The structure of Valdivia compact lines
Original language description
We study linearly ordered spaces which are Valdivia compact in their order topology. We find an internal characterization of these spaces and we present a counter-example disproving a conjecture posed earlier by the first author. The conjecture assertedthat a compact line is Valdivia compact if its weight does not exceed $aleph_1$, every point of uncountable character is isolated from one side and every closed first countable subspace is metrizable. It turns out that the last condition is not sufficient. On the other hand, we show that the conjecture is valid if the closure of the set of points of uncountable character is scattered. This improves an earlier result of the first author.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology and its Applications
ISSN
0166-8641
e-ISSN
—
Volume of the periodical
157
Issue of the periodical within the volume
7
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
—
UT code for WoS article
000276840900004
EID of the result in the Scopus database
—