Uniform asymptotics for S- and MM-regression estimators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10050516" target="_blank" >RIV/00216208:11320/10:10050516 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Uniform asymptotics for S- and MM-regression estimators
Original language description
In this paper we find verifiable regularity conditions to ensure that S-estimators of scale and regression and MM-estimators of regression are uniformly consistent and uniformly asymptotically normally distributed over contamination neighbourhoods. Moreover, we show how to calculate the size of these neighbour- hoods. In particular, we find that, for MM-estimators computed with Tukey's family of bisquare score functions, there is a trade-off between the size of these neighbourhoods and both the breakdown point of the S-estimators and the leverage of the contamination that is allowed in the neighbourhood. These results extend previous work of Salibian-Barrera and Zamar for location-scale to the linear regression model.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06024" target="_blank" >LC06024: Jaroslav Hájek Center for Theoretical and Applied Statistics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of the Institute of Statistical Mathematics
ISSN
0020-3157
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
5
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
31
Pages from-to
—
UT code for WoS article
000280072500005
EID of the result in the Scopus database
—