A Nonparametric Bootstrap Comparison of Variances of Robust Regression Estimators.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00509646" target="_blank" >RIV/67985807:_____/19:00509646 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Nonparametric Bootstrap Comparison of Variances of Robust Regression Estimators.
Original language description
While various robust regression estimators are available for the standard linear regression model, performance comparisons of individual robust estimators over real or simulated datasets seem to be still lacking. In general, a reliable robust estimator of regression parameters should be consistent and at the same time should have a relatively small variability, i.e. the variances of individual regression parameters should be small. The aim of this paper is to compare the variability of S-estimators, MM-estimators, least trimmed squares, and least weighted squares estimators. While they all are consistent under general assumptions, the asymptotic covariance matrix of the least weighted squares remains infeasible, because the only available formula for its computation depends on the unknown random errors. Thus, we take resort to a nonparametric bootstrap comparison of variability of different robust regression estimators. It turns out that the best results are obtained either with MM-estimators, or with the least weighted squares with suitable weights. The latter estimator is especially recommendable for small sample sizes.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Conference Proceedings. 37th International Conference on Mathematical Methods in Economics 2019
ISBN
978-80-7394-760-6
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
168-173
Publisher name
University of South Bohemia in České Budějovice, Faculty of Economics
Place of publication
České Budějovice
Event location
České Budějovice
Event date
Sep 11, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000507570400027