All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On three parameters of invisibility graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10050547" target="_blank" >RIV/00216208:11320/10:10050547 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On three parameters of invisibility graphs

  • Original language description

    The invisibility graph I(X) of a set X in a Euclidean space is a (possibly infinite) graph whose vertices are the points of X and two vertices are connected by an edge if and only if the straight-line segment connecting the two corresponding points is not fully contained in X. We settle a conjecture of Matoušek and Valtr claiming that for invisibility graphs of planar sets, the chromatic number cannot be bounded in terms of the clique number.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computing and Combinatorics

  • ISBN

    3-642-14030-0

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

  • Publisher name

    Springer-Verlag

  • Place of publication

    Berlin

  • Event location

    Nha Trang, Vietnam

  • Event date

    Jul 19, 2010

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article