All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On three measures on non-convexity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10360661" target="_blank" >RIV/00216208:11320/17:10360661 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s11856-017-1467-1" target="_blank" >http://dx.doi.org/10.1007/s11856-017-1467-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-017-1467-1" target="_blank" >10.1007/s11856-017-1467-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On three measures on non-convexity

  • Original language description

    The invisibility graph I(X) of a set X in R^d is a (possibly infinite) graph whose vertices are the points of X and two vertices are connected by an edge if and only if the straight-line segment connecting the two corresponding points is not fully contained in X. We consider the following three parameters of a set X: the clique number omega(I(X)), the chromatic number chi(I(X)) and the convexity number gamma(X), which is the minimum number of convex subsets of X that cover X. We settle a conjecture of Matoušek and Valtr claiming that for every planar set X, gamma(X) can be bounded in terms of chi(I(X)). As a part of the proof we show that a disc with n one-point holes near its boundary has chi(I(X)) &gt;= log log(n) but omega(I(X))=3. We also find sets X in R^5 with chi(X)=2, but gamma(X) arbitrarily large.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

  • Volume of the periodical

    218

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    IL - THE STATE OF ISRAEL

  • Number of pages

    39

  • Pages from-to

    331-369

  • UT code for WoS article

    000398070100012

  • EID of the result in the Scopus database

    2-s2.0-85015798149